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ABSTRACT
Analysis of diarrhoea data in Malawi has been commonly done using classical methods.
However, of late new approaches, such as Bayesian methods, have been introduced in
literature. This study aimed at trying out new statistical techniques in comparison with
the classical ways as well as finding out how each isolates dominant factors for a child’s

risk to diarrhoea.

To isolate dominant factors, Logit, Poisson, and Bayesian models were fitted to 2006
Malawi Multiple Indicator Cluster Survey data, collected with an aim of estimating key
indicators of women and child health per district. The comparison between Logit and
Poisson models was done via chi-square’s goodness-of-fit test. Confidence and Credible
Intervals were used to compare Bayesian and Logit/Poisson model estimates. Modelling

and inference in Bayesian method was done through MCMC techniques.

The results showed agreement in directions of estimates from Bayesian and Poisson/
Logit models, but Poisson provided better fit than Logit model. Further, all models
identified child’s age, breastfeeding status, region of stay and toilet-sharing status as
significant factors for determining the child’s risk. The models ruled out effects of
mother’s education, area of residence (rural or urban), and source of drinking water on
the risk. But, Bayesian model proved significant closeness to lake/river factor, which was

not the case with Poisson/ Logit model.

The findings imply that classical and semiparametric models are equally helpful, while

Poisson is better than Logit model when estimating the child’s risk to diarrhoea.

Vi
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CHAPTER 1: INTRODUCTION

1.1 Background to the problem

Infants and young children are more vulnerable to many kinds of diseases than adults due
to general weakness of their still growing bodies. Approximately 3.5 million deaths each
year are attributable to diarrhoea worldwide, 80% of which occur in children under the
age of 5 years (WHO, 2010). In Malawi, the disease accounts for 11% of deaths in
children aged below 5 years (2004 Demographic and Health Survey, DHS). Improving a
child’s health is one of the eight Millennium Development Goals (MDGs) adopted by
governments at the United Nations Millennium Summit in 2000. In MDG 4, countries
have committed to reducing child mortality rates by three quarters from their national

baseline rates between 1990 and 2015 (WHO, 2007).

Study reports have indicated that Malawi is on the right track to achieving MDG 4. For
instance, the 2006 Malawi Multiple Indicator Cluster Survey (2006 MICS) showed that
infant and under-five children mortality rates declined from 104 and 189 per 1,000 live
births, respectively in 2000 to 72 and 122 in 2006 (UNICEF-Malawi, 2010). The decline
was attributed to high coverage of immunization and Vitamin A supplementation,

elimination of neonatal tetanus, malaria control activities, and increased rates of



exclusive breastfeeding and access to safe drinking water in the country (UNICEF-

Malawi, 2010).

1.2 Early childhood development and diarrhoea control policies in Malawi

In October, 2003 the Malawi government through Ministry of Gender, Youth and
Community Services adopted a policy that provides guidelines on what has to be done to
promote early childhood development. The policy goal is to promote a comprehensive
approach to early childhood development programmes and practices for children aged O -
8 years, to ensure fulfillment of the rights to fully develop their physical, emotional,
social, and cognitive potential. One of the policy objectives is to provide the best start for
the children’s life, in which strategies such as sensitizing caregivers and communities on
the Rights of the Child, encouraging exclusive breast-feeding from 0 to 6 months and
encouraging timely introduction of complementary foods are prioritized (Malawi’s
National Policy on Early Childhood Development, 2003). These strategies provide a right

direction toward achieving MDGs 4/6.

In particular, Malawi government adopted UNICEF/WHO’s seven-point plan for
diarrhoea control, which include fluid replacement to prevent dehydration; zinc
treatment; rotavirus and measles vaccinations; promotion of early and exclusive
breastfeeding and vitamin a supplementation; promotion of hand washing with soap;
improved water supply quantity and quality, including treatment and safe storage of

household water; and community-wide sanitation promotion (PATH, 2011).



Based on these guidelines, the diarrhoea control policies were formulated in between
2010 and 2011 by the steering committee having representatives from Ministries of
Health and Irrigation, University of Malawi-The Polytechnic and other organisations. The
committee recommended achieving political support for raising the profile of diarrhoeal
disease; ensuring that policies are effectively coordinated and implemented; increasing
collaboration and integration through a Technical Working Group (TWG); developing
national programs; and information, education and communication to allow one clear
message to be disseminated at a national level (PATH, 2011). Having such a policy

document is a positive development for the fight against the disease.

1.3 Childhood diarrhoea situation and risk factors in sub-Saharan Africa

Diarrhoea is an increase in volume of stool or frequency of defecation. It is one of the
most common clinical signs of gastrointestinal diseases, but also can reflect primary
disorders outside of the digestive system (Mwambete and Joseph, 2010). The disease can
be manifested in different levels of clinical intensity, ranging from acute to chronic or
severe stages. Acute diarrhoea, which is a common cause of death in developing
countries, appears rapidly and may last from five to ten days. Chronic diarrhoea lasts
much longer and is the second cause of childhood death in the developing world

(www.medicalnewstoday.com).

Diarrhoeal disease remains a leading cause of mortality and morbidity of children in sub-

Saharan Africa, a region where unique geographic, economic, political, sociocultural, and


http://www.medicalnewstoday.com/

personal factors interact to create distinctive continuing challenges to its prevention and

control (Hamer, Simon, Thea and Keusch, 1998).

Many studies have attempted to identify risk factors for childhood diarrhoea in Africa.
Hamer, et al (1998) observe that a number of different social, political, and economic
factors are present in sub-Saharan Africa which contribute to the constant morbidity from
acute and persistent diarrhoea, as well as intermittent epidemics of cholera and dysentery
common to this region of the world. This was found through a meta-analysing on studies
done in Gambia (1960-87), Guinea-Bissau (1987-90), Kenya (1975-78), Malawi (1983-
88), Nigeria (1977-78), Tanzania (1984-85), DRC (1989-90) and Sudan. The data was
obtained through Medline database, with an aim of highlighting key areas for future
research. They assert that morbidity and mortality from childhood diarrhoea are further
compounded by inappropriate household case management and the frequent misuse of
antibiotics. They observe that limited knowledge among many health care providers of
the proper treatment of diarrhoea also contributes to poor outcomes. Such findings could
inform the factors useful for inclusion in a model if statistical models are to be applied on

diarrhoea data.

A cross-sectional descriptive survey was conducted in Temeke Municipality, Dar es
Salaam, Tanzania over a 4-month period to investigate on knowledge and perception of
mothers/caregivers of under-five children on childhood diarrhoea, with focus on
frequency of diarrhoea episodes and their risk factors as well as effectiveness of
traditional remedies used for its management prior to seeking medical attention. The

results from 161 mothers indicated that frequency of diarrhoea episodes was high among
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the under-fives and was comparable between females and males. In addition, Mothers’
knowledge on predisposing factors of childhood diarrhoea was poor, which was directly
correlated with education level. It was also found out that only about one-third of the
respondents were aware of risk factors for childhood diarrhoea that cited poor sanitation
and water as the main factors. Also, diarrhoea episodes were perceived wrongly as
normal growth stage and that they were caused by several other “’illnesses’” (Mwambete

and Joseph, 2010).

While the results on ignorance of mothers on potential risk factors to diarrhoea in
Tanzania agree with those of Munthali (2005) in Malawi, who found out that mothers and
caregivers in Rumphi wrongly associated child diarrhoea to child’s teeth development
and breastfeeding by a pregnant mother, use of correlation coefficient as a tool to judge
usefulness of the factors was statistically weak procedure. Correlation coefficient does
provide little information about the relationship between variables. Although it gives a
measure of association, the coefficient is not indicative of a regression relationship

between the variables (Kleinbaum and Kupper, 1978).

In Accra, Ghana, Boadi and Kuitunen (2005) examined two weeks incidence of diarrhoea
among children less than 6 years, with an aim of identifying the risk factors for morbidity
due to diarrhoea, using multivariate analysis. The results showed that household
economic status, mother education, access to water and sanitation facilities, hygiene
practices, flies infestation and regular consumption of street food were significantly
associated with the risk. Although the study has a number of risk factors that could be

tested if they hold true in Malawian setting, the model used missed to evaluate some key

5



factors such as child’s age and breastfeeding status which have been reported useful in
many studies. Thus, a typical statistical model involving several key factors could be

much helpful.

1.4 Facts about childhood and diarrhoea

One of the important roles of the healthy bowel is to reabsorb water from the faeces.
With diarrhoea, the bowel is unable to do this; hence, the watery bowel movements. This
fluid loss can cause the body to become dehydrated (run short of water). This can happen
quickly and is a serious problem if not attended to, particularly in the elderly and the very
young. The younger the child, the easier it is for it to become dehydrated (UBM Media,
2009). Children are more susceptible to the complications of diarrhoea because a smaller
amount of fluid loss leads to dehydration, compared to adults

(www.medicalnewstoday.com).

The signs of serious dehydration in children include dry mouth, lips and tongue, or no
tears, sunken eyes or fontanelle (the soft spot on top of a baby’s head), cold hands and
feet or mottled bluish skin, unusual lack of energy, sleepiness or difficult to wake, and

fewer wet nappies than usual or unable to drink (UBM Media, 2009).

‘Gastro’ spreads very easily to others. It is spread when a person touches something that
has been in contact with diarrhoea, and then puts his/her hand to the mouth. Some viruses
can live on items (including children’s toys) for up to 14 days. The spread can be
prevented by washing one’s hands thoroughly with warm soapy water, especially after

using the toilet, before preparing food and after nappy changes (if a child is unwell),

6
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washing and rinsing soiled clothing separately, and not sharing food and drinks (UBM

Media, 2009).

1.5 Under-five child diarrhoea situation in Malawi

The UNICEF-Malawi (2010) report cited neonatal conditions, pneumonia, diarrhoea,
malaria, AIDS and malnutrition as immediate and most common causes of infant and
child mortality in the country, and recommended that the prevailing efforts needed to be
sustained and scaled up in some areas in order to maintain the established trend. The
report and its recommendation respectively implied that diarrhoea was one of the
illnesses that were troubling lives of young children in Malawi, and that the size of the

problem was not the same in all parts of the country.

These findings by UNICEF-Malawi were in agreement with those from 2004 Malawi
Demographic and Health Survey (2004 Malawi DHS) which found out that dehydration
caused by severe diarrhoea was a major cause of morbidity and mortality among young

children in Malawi.

The 2004 Malawi DHS indicate that 22% of children had diarrhoea at some time in two
weeks preceding the survey. Further, it was found out that under-five child diarrhoea
problem was not the same across age groups (that is, highest in age 6-11 months, 41%),
across districts (that is, most prevalent in Salima, Kasungu, and Thyolo, > 27%), across
areas of residence (that is, most prevalent in rural areas, 23%), among other background
characteristics of the child. The variations are expected as the effects of place on health

and health behaviours are far from uniform across population groups (Burton et al, 2011).
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Thus, different children or parts of the country may influence the disease outcome

differently, which may be attributed to various factors as well.

As it has been indicated, one may appreciate that diarrhoea becomes a serious problem in
infants and young children compared to adults, and hence the former need greater
attention from all stakeholders in order to save lives which are under great risk. However,
a meaningful consideration will require knowledge of the distribution of the disease
throughout the country and across various groups of the children. Thus, there was need

for an investigation to find a way of modelling the said distribution.

1.6 Statement of the problem

Statistical models are rarely used in quantifying under-five child diarrhoea distribution in
Malawi, despite their potential. It should be appreciated that statistical models have the
ability of estimating amount of a child’s risk to a disease, such as diarrhoea. Thus,
although nationwide surveys such as DHS and MICS have over the years adequately
highlighted the high prevalence and incidence rates of diarrhoea in under-five children,
very little efforts have been made in such studies to include use of statistical models in
identifying the possible risk factors. It should be emphasized that high prevalence or
incidence rate of a disease in children with a certain characteristic is not a guarantee that
the studied characteristic is a risk factor for the disease, unless proven so by a valid
statistical procedure. So, it is high time nationwide studies could go beyond reporting
disease incidence or prevalence only, but factors behind such observed rates. However,

ignoring statistical models may reflect lack of technical expertise in applying such



models; hence this study creates an opening to proper application of such methods in the

studied disease.

1.7 Purpose of the study

This study aimed at investigating variations in risk of diarrhoea in under-five children in

Malawi.

1.8 Study objectives

1.8.1 General objective

This study uses statistical models to explain incidence of under-five child diarrhoea in

Malawi.

1.8.2 Specific objectives

1.8.2.1 To compare estimates found using classical models and modern semiparametric
models.

1.8.2.2 To identify appropriate classical model to use when explaining a child’s risk to
diarrhoea.

1.8.2.3 To evaluate influence of socio-economic and bio-demographic factors on the
child’s risk to diarrhoea.

1.9 Significance of the study

It was assumed that stakeholders in the health sector would appreciate the value of using

statistical models in explaining under-five child’s risk to diarrhoea, based on results from



this study. While most Malawians are aware of the burden of diarrhoea in the life of
under-five child in the country, there is limited work done on estimating the possible risk
factors of the disease. Thus, use of statistical models will provide another dimension from

which proper interventions can be decided.

Various stakeholders in health might have produced point estimates on proportion of
young children who risk catching diarrhoea in Malawi, based on some operational
observations. But, such raw estimates usually fall short of predictive power, expected
validity and reliability, and hence do not command the required believability from some
audience in the population. It is for this reason that statistical model estimates may often

stand supreme to raw estimates.

Estimates from statistical models usually have some degree of confidence attached to
them which, depending on sample size and sampling procedure adopted, guarantees the
level of believability to finding the same estimates more number of times if the study was
carefully replicated in the population being studied. In addition, statistical techniques are
sensitive to insignificant factors in ascertaining relationships between variables. Thus, as
opposed to raw estimates, statistical modelling helps to identify helpful as well as

worthless factors in measuring relationships of variables.

1.10 Summary

For Malawi to attain MDG 4/6 as well as to monitor progress towards achievement of the
same, it needs various initiatives. One approach to do this is to employ modelling

techniques to understand the dynamics of various diseases, such as diarrhoea. The aim of

10



this study is therefore to analyse the variations in the risk of diarrhoea in under-five

children in Malawi using statistical models.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter reviews the theory of statistical modelling. Two distinct approaches to
modelling, frequentist and Bayesian approaches have been reviewed. Finally, studies that

have applied statistical modelling techniques in child diarrhoea are reviewed.

2.2 Statistical modelling

2.2.1 Definition of a statistical model

A statistical model is a set of mathematical formulae and assumptions that describe a
real-world situation (Aczel and Sounderpandian, 2002). Thus, the concept of statistical
model goes hand in hand with that of probability distribution and the population
parameters. A parameterized statistical model is a parameter set, ©, together with a
function, P. ® — ®(S), which assigns to each parameter point e ¢ @ a probability
distribution P, on a sample space, S (McCullagh, 2002). Further, a model is referred to as
parametric when its functional form is completely specified, except for the values of the
unknown parameters; it is non-parametric when it is a set of probability distributions with

infinite dimensional parameters; and it is referred to as semi-parametric model when it

12



also has infinite dimensional parameters, but is not dense in the space of distributions

(Kleinbaum & Klein, 2005).

Essentially, a statistical model is a formalization of relationships between variables in the
form of mathematical equations. It describes how random variables are related to one
another. The model is statistical as the variables are not deterministically but
stochastically related. It is frequently thought of as a pair (Y, P), where Y is the set of
possible observations and P the set of possible probability distributions on Y. It is
assumed that there is a distinct element of P which generates the observed data.
Statistical inference enables one to make statements about which element(s) of this set

are likely to be the true one (Spanos, 2003; Long, 1977; Dobson, 2002; Agrest, 1996).

Briefly, it suffices to use statistical modelling in this study to explain the distribution of
under-five diarrhoea in Malawi, as this involve seeking relationships between the

diarrhoea variable and other variables.

2.2.2. Classes of statistical models

Statistical models can be classified according to number of endogenous variables (that is,
variables whose values are determined directly within the system of equations) and the
number of equations. In this regard, models in which number of equations equals number
of endogenous variables are referred to as complete models, and incomplete models are
those in which there is imbalance between number of equations and the number of
endogenous variables. Other popular classifications are the general linear model (that is, a

model restricted to continuous dependent variables, for instance, linear regression
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model), the generalized linear model (that is, a model that can allow discrete dependent
variables, for instance, logistic regression model), the multilevel model (that is, a model
with systematic term reflecting different levels of data, for instance, empirical Bayes
model), and the structural equation model (that is, a model that takes into account both
linear and nonlinear effects of systematic term, for instance, Bayesian structured additive

model) (Ader, 2008).

In summary, it is important to learn various classes of statistical models so that the value

of the ones proposed in this study can be judged accordingly.

2.2.3 Stages of building a statistical model

It is often the wish of every researcher that the assumed model should explain as much as
possible about the process underlying the data at hand. But, due to uncertainty inherent in
all real-world situations, the proposed model may not explain everything; there would
always be some remaining errors. The errors may be due to unknown outside factors that
can affect the process generating the data at hand (Aczel and Sounderpandian, 2002).

Thus, dealing with errors forms part of the model building process.

The process of model building generally involves four steps that almost follow each other
logically. These include model specification, which is basically laying down the formula
and stating its assumptions. The next stage is to estimate the parameters of the model
from the data set. Thereafter, examination of the residuals and testing for appropriateness

of the model is done. Finally, the model is used for its intended purpose, if appropriate;
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otherwise, it is aborted (Aczel and Sounderpandian, 2002; Dobson, 2002; Kleinbaum and

Kupper, 1978).

Concisely, at the first stage a particular model is proposed that describes a given
situation, for instance a simple linear regression model that describes the relationship
between two variables may be proposed. A model is specified in two parts: an equation
linking the response and explanatory variables and the probability distribution of the

response variable (Dobson, 2002).

The second stage, which involves estimation of model parameters, is achieved through
many techniques, such as Maximum Likelihood Estimation (MLE) procedure, Least
Squares Estimation (LSE) procedure, among other possible ways. The MLE method finds
estimate of the parameter that maximizes the likelihood function (joint probability
distribution function) of the parameter given data set at hand. Thus, making assumptions
about the probability distribution of response variable in the model and getting a random
sample are both necessary with the MLE procedure (Dobson, 2002). The LSE method,
commonly used in linear regression models, finds estimates of the parameters that are
best linear unbiased estimators (blue) of regression parameters and that have lowest or
minimum variance of all possible unbiased estimators of the regression parameters as
specified by the Gauss-Markov theorem (Aczel and Sounderpandian, 2002; Dobson,

2002; Kleinbaum and Kupper, 1978).

The third stage considers the observed errors that result from fitting the model to data.

The observed errors, called residuals, represent the information in the data not explained
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by the model. In other words, they reflect the difference between the observed and fitted
values of the response variable (Aczel and Sounderpandian, 2002; Dobson, 2002). Thus,
this stage checks the adequacy of the model - that is, how well the model fits or
summarizes the data (Dobson, 2002). For instance, in Analysis of Variance (ANOVA)
model the within-group variation is due to the residuals. If the residuals are found to
contain some non-randomness, systematic component, the proposed model is re-
evaluated, and if possible, adjusted to incorporate the systematic component found in the
residuals; or, the model may be discarded and a different one can be tried (Aczel and

Sounderpandian, 2002).

Finally, at fourth stage it is where the model is used for its intended purpose; that is,
prediction of variable, control of variable, or the explanation of the relationships among
variables. This happens when it is believed that the model residuals contain nothing more
than pure randomness (Aczel and Sounderpandian, 2002). This stage is a statistical
inference stage where calculation of confidence intervals and testing of hypotheses about

the parameters in the model and interpretation of results are made (Dobson, 2002).

Thus, reviewing stages of building a model informs procedures that this study has to

abide by when applying chosen models to the diarrhoea dataset.

2.2.4 General and Generalized Linear Regression Models

As earlier alluded to, General Linear Models are those which are restricted to formalizing

relationships between one or more explanatory variables and a continuous dependent
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variable. Generalized Linear Models (GLMs), on the other hand, allow any form of

dependent variables.

2.2.4.1 Historical perspective of regression models

The term ‘regression’, as it is used today, refers to the statistical technique of modelling
the relationship between variables. Its history dates back to 1889 when an Englishman by
the name Sir Francis Galton published a paper on heredity, “Natural Inheritance” (1889)
in which he reported his discovery that sizes of seeds of sweet pea plants appeared to
“revert,” or ‘“regress,” to the mean size in successive generations (Aczel and
Sounderpandian, 2002, p. 435). He also reported results of a study of the relationship
between heights of fathers and the heights of their sons. A straight line was fit to the data
pairs: height of father versus height of son. Here, too, he found a “regression to
mediocrity”: the heights of the sons represented a movement away from their fathers

toward the average height (Aczel and Sounderpandian, 2002, p. 435).

2.2.4.2 Generalized Linear Modelling

The term Generalised Linear Model is due to Nelder and Wedderburn (1972) who
showed how the linearity could be exploited to unify apparently the diverse statistical
techniques (McCullagh & Nelder, 1989; Dobson, 2002). Later Wedderburn (1974) used
quasi-likelihood method that allows less strict error assumptions to estimate the
regression parameterss (McCullagh & Nelder, 1989). But earlier contributions were made
by Gauss (1823) who introduced the least squares method; Fisher (1922) who used model
techniques in Agriculture experiments; Bliss (1935) who introduced the probit regression;

Dyke & Patterson (1952) who used Logit for proportions (McCullagh & Nelder, 1989).
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The main concepts about GLMs are that the response variables have distributions other
than Normal, they may even be categorical rather than continuous, and that the
relationship between the response and explanatory variables need not be of the simple
linear form. In short, a GLM is linear model for transformed mean of response variable
with distribution in exponential family. It extends classical regression models to
encompass non-normal response distributions and modeling functions of mean (Agrest,

2002; McCullagh & Nelder, 1989).

GLMs expound ideas of “regression to the mean” as they relate a function of mean of a
random response variable to the explanatory variables through a prediction equation
having linear form. Briefly, a GLM contains three components: the “random component”
that identifies the response variable, for example, Y and assumes a probability distribution
for it; the “systematic component” that specifies the explanatory variables used as
predictors in the model; and the “link” that describes the functional relationship between
the systematic component and the expected value (mean) of the random component
(Agrest, 1996). Good examples of GLMs include logistic and Poisson models, these are
discussed in detail in Chapter 3. Thus, the random component consists of the response
variable Y with independent observations y1, . . . , yN from a distribution in natural
exponential family, that is a distribution whose probability density or mass function can

be written in the form;

f(yi; 61) = a(6i)b(yi)exp[yiQ(6i)] or f(y; 6) = exp[a(y)b(6) + c(6) + d(y)],
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where Q(0i) or b(0) is called a natural parameter, while any other parameters, in addition
0, are called nuisance parameters forming parts of a, b, ¢ and d, and treated as though
they are known. Further, if a(y) =y, that is the link function that transforms the mean to
the natural parameter is called the canonical link, and the distribution is said to be in
canonical (i.e. standard) form. The link function g(ui) = ui is called identity link, and it
has #i = wui. The systematic component relates a vector (ni, ..., #N) to explanatory
variables xi through a linear model, that is, #i = Xgjxij, which is called a linear predictor.
Then the link function connects the random and systematic components. For example, if
ui = E(Yi), the model links ui with »i by g(«i), where g is a monotonic, differentiable
function. Thus, g links E(Yi) to xi through g(ui)=2pjxij (McCullagh & Nelder, 1989;

Dobson, 2002).

Therefore, it is beneficial to learn that GLMs allows any form of dependent variable in a
relationship, since the response variable proposed in this study is the discrete diarrhoea

variable.

2.2.5 Bayesian modelling

2.2.5.1 Historical perspective of Bayesian modelling

As earlier alluded to, a statistical model tries to estimate the values of unknown
population parameters using observed data. Apart from GLMs which fall under classical
models, the estimation can also be done through modern Bayesian techniques which
assert that population parameters are random (but unknown) quantities rather than being

regarded as fixed quantities, as in classical approaches. Thus, Bayesian techniques
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consider population parameters as having their own probability distributions in the

population, called prior distributions.

The approach is called ‘Bayesian’ because the mathematical link between the
probabilities associated with data results and the probabilities associated with the prior
information is Bayes’ theorem discovered in 1761 by the English clergyman Thomas
Bayes. His work was presented to the Royal Society of London by a friend in 1763-after
Bayes’ death (Aczel and Sounderpandian, 2002). The theorem allows one to combine the
prior information with the results of sampling to obtain posterior (post sampling)

information.

2.2.5.2 Bayesian statistical inference

Classical/Frequentist statistical approaches to inference assume that population parameter
6 is a constant (but unknown) guantity in the population and can be easily estimated from
sample data by just knowing the probability distribution of the random dependent
variable Y in the population (that is, knowing P(Y), E(Y) and Var(Y)), which is usually
done via point estimates, confidence interval estimates, or hypothesis testing. On the
other hand, Bayesian approaches assert that 4 is a random (but unknown) quantity and it
has its own probability distribution in the population (called prior distribution), that is,
P@©), E®), and Var(6). Hence, estimation of § which is based on its posterior distribution
has to combine/mix the distribution of Y (sampling information) and that of 6 (prior
information) (Ridall, 2007; Carlin and Louis, 2000; Aczel and Sounderpandian, 2002).
The mathematical formula that accomplishes this is Bayes’ theorem. The Bayes’ theorem

for a discrete random variable is given as
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where 6 is an unknown population parameter to be estimated from the data y. The
summation in the denominator is over all possible values of the parameter of interest 6,

and y stands for the particular data set.

Thus, at a minimum, a Bayesian model requires an additional component in the form of a
prior distribution on @. A Bayesian model in the sense of Berger (1985), Smith (1984) or
Bernardo and Smith (1994) requires an extra component in the form of a judgment of
infinite exchangeability or partial exchangeability in which parameters are defined by

limits of certain statistics.

In addition, Bayesian statistical conclusions about the parameter 6, or unobserved data,
are made in terms of probability statements which are conditional on the observed data
values y (Gelman et al, 2004). An attractive feature of Bayesian inference is that
inferences are made conditional on the observed data which is not the case in classical
statistics where one must think about the possibilities of data sets distinct from the one
actually observed. The only data set relevant for drawing conclusions in Bayesian

inference is the data set that one sees (Albert, 1995).

In a nutshell, the under-five child diarrhoea prevalence or incidence being estimated in
this study may not be static in the population but changing with time due to other factors.

Thus, engaging Bayesian as well as classical approaches was a necessary mix.
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2.2.5.3 Parameter estimation in Bayesian inference

It should be appreciated that the difficulties of Bayesian modelling are how one gets to
the posterior. One needs to specify a prior (sometimes admitting lack of knowledge about
the model initially: a so-called uninformative or flat prior) and then estimation of the
shape of the posterior distribution follows. The analytical problem in this is that all the
posterior probabilities must add up to 1 (the prior and posterior distributions are
probability density functions), and thus the product of the likelihood function and the
prior distribution must be standardized by a sum of probabilities of all possible
outcomes. In most cases this cannot be figured out analytically and so estimation of the
shape of the posterior must be done using a numerical random sampling technique, for
instance, Markov chain Monte Carlo simulation (MCMC). In many ways this is similar to
the optimization routines needed to calculate Maximum Likelihood Estimates (MLEs):
like the simulated annealing algorithm, MCMC works sequentially to find new parameter

values using random jumps through parameter space.

Of the several common MCMC variants used to 'solve’ (actually sample from) the
posterior distribution, perhaps the most popular is called Gibbs sampling. This algorithm
(often called the Gibbs sampler), available in most statistical software for Bayesian data
analysis, is particularly appropriate for estimating the value of one parameter conditional
on values of a host of other parameters, which is especially effective for fitting
hierarchical Bayesian models. Given a set of parameters in the specified model, the Gibbs
sampler starts a Markov chain with a set of initial values and then performs the i

iteration, for example, for i = 1, 2, ..., m, by updating successively from the full
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conditional distributions. The completion of such a loop results in a single iterate of the
Gibbs sampler with an update of first parameter estimate. The process is repeated m times
to obtain a Gibbs sample of m vectors. From Markov chain theory it is obvious that such
a chain will eventually converge to a stationary or equilibrium distribution which is
precisely the posterior distribution upon which the Bayesian data analysis is based

(Banerjee, 2011).

It suffices to apply MCMC estimation techniques in this study, considering the fact that
some variables assumed in the relationship were continuous which were believed to have

nonlinear or varying effects that could not be captured using MLE methods.

2.2.6 Strengths and limitations of Bayesian modelling over classical modelling

As one may appreciate, Bayesian modelling is a generalization of linear and generalized
linear modelling in which regression coefficients are themselves given a model whose
parameters are also estimated from data. Like regression methods, multilevel Bayesian
models can be used for a variety of purposes, including prediction, data reduction, and
causal inference from experiments, and observational studies (Gelman, 2005). Compared
to classical regression, multilevel modelling is almost always an improvement, but to
different degrees: “for prediction, multilevel modelling can be essential, for data

reduction it can be useful, and for causal inference it can be helpful” (Gelman, 2005, p.1).

In terms of data reduction, the inferences from the Bayesian models are more reasonable
compared to classical estimates. It is common to have identical estimates for all levels

when using classical regression. For example, an estimate may be obtained that predicts
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amount of change in number of children to suffer from diarrhoea corresponding to a one
unit change in region of stay which may be particularly inappropriate for multilevel
application whose goal is to identify the locations in which residents are at high risk of
diarrhoea. In addition, the classical regression model may over fit the data, for example
giving an implausibly high estimate of the average number of children to suffer from
diarrhoea. This can happen in areas where only few diarrhoea observations were
available. Multilevel modelling avoids this by taking into account variations in the data at

both individual and group levels (Gelman, 2005).

Another advantage of multilevel modelling for this application is that it allows one to
study the relation of, for example, household parameters to household-level predictors. It
would be possible to estimate this second-level relation using classical regression, but
this would mean fitting two separate models: one for unpooled, and the other for
completely pooled data. The multilevel model has the appeal of fitting the two levels
together, and can actually be implemented using a Gibbs sampler alternating between the

data-level and household-level regression steps (Gelman, 2005).

In terms of prediction, Gelman (2005) acknowledges that perhaps the clearest advantage
of multilevel models comes in prediction. He demonstrated using cross-validation
analysis that root-mean-squared cross-validation errors for multilevel model estimates
were always the smallest compared with complete pooling and no-pooling classical
regression model estimates for radon levels in U.S. homes. Thus, the multilevel model
gives more accurate predictions than the no-pooling and complete-pooling regressions,

especially when estimating group averages. Thus, multilevel models have the ability to
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separately estimate the predictive effects of an individual predictor and its group-level
mean which are sometimes interpreted as “direct” and “contextual” effects of the

predictor (Gelman, 2005).

In addition, most parametric models often lack the capability of identifying non-linear
relationships between dependent and independent variables. The use of Bayesian

semiparametric approaches avoids these shortcomings (Jerak and Wagner, 2003).

In terms of causal inference, multilevel models can easily be misinterpreted. With
identical data of a social nature, it would be easy to leap to a misleading conclusion and
find contextual effects. However, strong predictive effects of model predictors cannot
necessarily be interpreted causally for observational data even if these data are a random
sample from the population of interest (Gelman, 2005). Complication arises if one
considers possibility of correlation between individual-level predictor, x, and for
example, cluster-level error. By simply multiplying likelihood and prior densities, the

posterior density implicitly assumes the cluster errors are independent of x.

Nevertheless, classical models are essential in a wealth of applications where one needs
to compensate for the paucity of the data (McCullagh, 2002). The various approaches to
data analysis (Frequentist, Bayesian, machine learning, exploratory or whatever) should
be seen as complementary to one another rather than as competitors for outright
domination (Julian Besag in McCullagh, 2002). Unfortunately, parametric formulations
become easy targets for criticism when, as occurs rather often, they are constructed with

too little thought (Julian Besag in McCullagh, 2002). The lack of demands on the user
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made by most statistical packages does not help matters and, despite enthusiasm one may
have for Markov chain Monte Carlo (MCMC) methods, their ability to fit very
complicated parametric formulations can be a mixed blessing (Julian Besag in

McCullagh, 2002).

In summary, the researcher has estimated child’s risk to diarrhoea using both classical
and multilevel models with the aim of assessing consistency of findings from both groups

of models.

2.3 Model strategies on child diarrhoea distribution in sub-Saharan Africa

Much as various organizations working in the health sector may provide estimates on
child diarrhoea prevalence in various locations of Malawi, there will always be need for
properly conducted scientific research on the same in order to complement their efforts as

well as to come up with scientifically relational, valid and reliable findings.

One such study was conducted in Nigeria by Kandala et al (2008) on diarrhoea mapping,
where data from 1999 and 2003 Nigerian Demographic and Health Surveys (Nigerian
DHS) were compared in their analysis. The aim of the study was to reveal and explore
inequalities in the health of Nigerian children by mapping the spatial distribution of
childhood morbidity associated with diarrhoea, cough, and fever, and accounting for
important risk factors, using Bayesian geo-additive model based on Markov-Chain-

Monte-Carlo techniques.
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This was done against the background that diarrhoea, cough, and fever were the leading
causes of childhood morbidity and mortality in sub-Saharan Africa, and that geographical
location was seldom considered as an explanatory factor for the large regional variations

in childhood morbidity attributed to the three causes in the region.

The results showed that overall prevalences of diarrhoea, cough, and fever recorded in
1999 (among children aged 3 years) were similar to those seen in 2003 (among children
aged 5 years). However, the results revealed that morbidity attributable to each of the
three causes varied differently at state level. In addition, place of birth (hospital v. other),
type of feeding (breastfed only v. other), parental education, maternal visits to antenatal
clinics, household economic status, marital status of the mother, and place of residence
(urban v. rural) were each significantly associated with the childhood morbidity

investigated.

Further, both surveys revealed that children from urban areas were found to have a
significantly lower risk of fever than their rural counterparts. It was also found out that
most other factors affecting diarrhoea, cough, and fever differed in the two surveys.
Besides, the risk of developing each of the three conditions increased in the first 6-8

months after birth, but then gradually declined.

Similar methods could expose same variations in child diarrhoea in Malawi at individual,
household or regional level if applied to Malawian national data. Other catchy results
from the study were the agreement and disagreement of some risk factors to diarrhoea,

cough, or fever in the 1999 and the 2003 surveys conducted in the same country. Thus,
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there was need to investigate the under-five child diarrhoeal situation in Malawi in order

to investigate if strength of some risk factors found in previous studies remain the same.

A similar study to that conducted in Nigeria was done in Malawi by Kazembe et al
(2009) where they investigated joint and disease-specific spatial clusters of fever and
diarrhoea at a highly disaggregated level while estimating the influence of other
covariates. They fitted to the 2000 Malawi DHS data a logistic model with spatial
random effects that were partitioned into shared and specific effects. The results showed
that shared area-specific effects were persistently high in central and southern regions of
the country. On the other hand, fever-specific effects were high along the Lakeshore
areas, and diarrhoea-specific effects were excessive in central and south-eastern zones of

the country.

While the results from the study should be appreciated, there was need to verify if similar
approaches would yield same results on most current national data. This is the case since
different stakeholders in health have used various interventions to respond to the 2000
under-five diarrhoeal situation in the country. In addition, a number of factors in

Malawian localities have changed between 2000 and 2011.

Interestingly, diarrhoea-specific effects were excessive in central and south-eastern
regions, while fever-specific effects were high along Lakeshore areas. One would expect
diarrhoea-specific effects to be prominent in lakeshore areas due to expected high use of
non-treated and unsafe water for domestic purposes by inhabitants of these areas. This

invited further questions for study.
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2.4 Summary

This Chapter has explored the notion of statistical modelling, that is, a tool for
establishing relationships among random variables. Cases of models in child diarrhoea in
sub-Saharan Africa have been explored. A search for literature has revealed that very few
studies have recently used statistical models to estimate distribution of child diarrhoea in

Malawi.
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CHAPTER 3: METHODOLOGY

3.1 Research design

This study was an applied quantitative research on secondary data. It employed statistical
procedures of Bayesian semiparametric additive, Logistic, and Poisson regression

modelling on 2006 Malawi Multiple Indicator Cluster Survey (MICS) data.

3.2 Appropriateness of design

The national survey data used was large enough to allow implementation of intended
statistical analyses, since estimates of a random variable from a large random sample are
believed to possess all optimal properties of an estimator. Perhaps due to the rigorous
process of random sampling employed in most surveys it happens that surveys usually
give accurate estimates of population parameters (Hansen et al, 1996), a property that is
desirable in statistical inference. Further, the national survey data had cross-sectional
information from all districts which would make it possible for the researcher to estimate
the distributions of child diarrhoea and amount of risk posed by various parts of the

country.

3.2.1 Logistic regression model

The logistic regression model was used due to the fact that the outcome variable, two-
week total number of diarrhoea cases, was believed to follow binomial distribution.
Introduced in the 1940s, Logistic regression is an example of a GLM where the random
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component is a Bernoulli random variable whose distribution is specified by probabilities
P(Y = 1) = r of success and P(Y = 0) = 1 - = of failure. If the outcome of a trial can only
be either a success or a failure, then the trial is called a Bernoulli trial. The total number
of successes X(Y=1) in one Bernoulli trial, which can be 1 or 0, is called a Bernoulli
random variable (X(Y=1) ~ Ber(x). When many independent and identical Bernoulli trials
n have been carried out, the resulting sequence of identically and independently
distributed Bernoulli variables is called a Bernoulli process (Aczel and Sounderpandian,
2002). For n independent observations on a binary response with parameter z, the total
number of successes, X(Y=1) has the Binomial distribution specified by the indices n and
7 (that is, Z(Y=1) ~ Bin(n, m)), and belonging to the exponential family of distributions,

that is, the probability mass function has the form f(y; 8) = exp[a(y)b(#) + c(0) + d(y)].

Each diarrhoea observation in the MICS data had two possible outcomes; either a child
suffered from diarrhoea or did not. Thus, each outcome was a Bernoulli process. Further,
it is known that the total number of children that were observed is fixed, with n = 15, 018,
and from the 2004 DHS prevalence of under-five child diarrhoea in Malawi was 22%,
hence = = 0.22, which was believed constant from one observation to another in the
children population. In addition, each observed child was an individual and therefore the
outcome in an observed child could not influence the outcome of the next child. Hence,
the outcomes were independently distributed in the children’s population. Therefore, the
total number of children who could suffer from diarrhoea in the country at any time of

observation was a binomial random variable. Its probability mass function is specified as
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which is an exponential form with c¢(r) = (1- n)", d(y) = ( J and b(x) or Q(n)= log(w/(1-

y

m)) and a(y) =y.

The natural parameter is therefore log(w/(1- =)), log of odds of response 1, the logit of z,
it’s canonical link. Because of this link function, the binomial or logistic model is also

called logit model.

The actual value of « in the population can vary as the value, x of X varies; hence the

notation = may be replaced by z(x) to reflect its dependence on that value (Agrest, 1996).

The relationship between x and =(x) is a nonlinear S-shaped curve, called logistic

function, given below:

n(x) = EE(Y=1)xy, ..., xp) = lf}ﬁ;f 1,;(1x+;r”+f ,pBXZ() )
0 1AL T e pp

where fo, . . . ,fp are parameters to be estimated from the data y.

In the situation where the explanatory variable x; is a binary exposure of interest, exp(f1)
is the adjusted ratio of the odds of the outcome occurring in the exposed group versus the
non-exposed group, adjusting for effects of the other explanatory variables x, . . ., X,
(Aczel and Sounderpandian, 2002; Agrest, 1996). As x gets large, n(x) approaches 0 if g

<0and it approaches 1 if 5 > 0.
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The transformation given below, logarithm of odds of success, called Logit transform,

linearizes the logistic function;

AN

z(x)= IOg(l—L;()x)) =By + BX +.ot BoX,

The estimation of parameters is usually done through Maximum Likelihood technique,
explained before. The Maximum Likelihood estimates of the parameters g, and
consequently of the probabilities zi = g(xi'p), are obtained by maximizing the log-

likelihood function;
N n,
I(7;y) = Z yilog 7z, +(n; —y;)log(1—7,) + IOg( j}
i=1 Yi
using iterative weighted least squares procedure (see Dobson, 2002).
3.2.2 Poisson regression model

Since for n Bernoulli iid observations, the total number of diarrhoea cases, (Y=1), at any
time was a positive integer, then Poisson distribution was assumed for the total number of
cases throughout the four-month period. When the response is a count, one can use a
count regression model to explain this response in terms of the given predictors.
Sometimes, the total count is bounded, in which case a binomial response regression
should probably be used. In other cases, the counts might be sufficiently large that a
normal approximation is justified so that a normal linear model may be used (Faraway,
2006). One of the common distributions for counts is Poisson. If £(Y=1) is a Poisson

random variable with mean u = E[X(Y=1)] = Var[2(Y=1)] > O, then:

33



exp (u)u”

PE(Y=1)=y) = . 2 —exp[u—log(y)+ylogul y=0,1,2, ...

From the exponential form, it is clear that the link function relating x« with predictors is
log link given by logu = o + XpX, where the parameters are estimated using usual

procedure of MLE.

According to Faraway (2006), the Poisson distribution arises naturally in several ways.
For instance, if the count is some number out of some possible total, then the response
would be more appropriately modelled as a binomial. However, for small success
probabilities and large totals, the Poisson is a good approximation and can be applied. For
example, in modelling the incidence of rare forms of cancer, the number of people
affected is a small proportion of the population in a given geographical area. A Poisson
regression model can be used in preference to a binomial. If x« = nz while n—oo, then B(n,
) is well approximated by Pois(u). Also, for small z, logit(z) ~ logz, so that the use of

the Poisson with a log link is comparable to the binomial with a logit link.

It is important to mention that to allow for correlation within households, robust standard
error was to be calculated using residuals at the cluster level. An important result
concerning Poisson random variables is that their sum is also Poisson. Specifically,
suppose that Y;~ Pois(u;) for i = 1,2,... and are independent, then X;Y; ~ Pois(Ziw). This is
useful because sometimes one has access only to the aggregated data. If we assume the
individual-level data is Poisson, then so is the summed data and Poisson regression can

still be applied (Faraway, 2006; Dobson, 2002).
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From the 2004 Malawi DHS, = = 0.22 and n ~ 10,000 for under-five child diarrhoea.
Therefore, = was considerably small while n being a large number. Hence, approximation

of binomial regression with logit link by a Poisson regression with a log link was valid.
3.2.3 Bayesian semiparametric structured additive model

The term Bayesian semiparametric model comes from the fact that both parametric and
nonparametric forms of relationship are assumed in one model. In this respect,
continuous covariates are treated non-parametrically with the help of smoothing functions
whereas categorical variables are related parametrically to the response variable (see
Kandala, 2001; Jerak and Wagner, 2003). In general, a Bayesian model is considered to
be a regression (a linear or generalized linear model) in which the parameters—the
regression coefficients—are given a probability model (Gelman and Hill, 2011).

The use of semiparametric model was therefore thought of in order to capture both linear
effects of discrete covariates and nonlinear effects of continuous covariates on the child’s
risk to diarrhoea. Further, the data had some categorical explanatory variables with more
than two levels; hence the model was employed in order to show the results in reduced

form of the covariates.

Assuming that total number of observed cases at any time in the four months MICS
study, £(Y=1) is a random variable belonging to an exponential family with parameters n

and z, then Z(Y=1) satisfies the logistic model

Iogit(ﬂ)=a+2ﬂx,

35



where a and g stand for parameter components, and X for a vector of factors or

covariates.

Further, it was assumed that a and £ were distributed as gamma random variables with
fixed scale and location parameters, u = v = 0.001, except for a continuous variable child
age whose parameters were assumed to have normal prior distributions with 0 means and

inverse gamma distributed variances.

It was assumed that regression parameters in this model are not static, but vary at: (1)
child’s individual-level; with focus on child’s age and breast feeding status; (2) child’s
family-level; focusing on mother’s education, family’s source of drinking water, and
whether or not the family toilet is shared and (3) child’s residential location; with focus
on region of stay (north, centre, or south), closeness to the lake or river (lake/river shore

or highland), and area of residence (rural or urban).

Briefly, the GLMs assume that, given covariates u and unknown parameters, the

distribution of the response variable y belongs to an exponential family, with mean

1 =E(y|u,y) linked to a linear predictor , by

Here, h denote a known response function, and y are unknown regression parameters.

The following structured additive predictor was used in this study to estimate a flexible
Bayesian semiparametric model that was fitted to the MICS data (see Brezger, Kneib and

Lang, 2005):

n, = fl(xrl)+"'+ fp(er)-f-U'r)/,
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where r is a generic observation indeX, x,j denote generic covariates of different type and
dimension, and f; (j = 1, 2, ..., p) are (not necessarily smooth) functions of the covariates.
The functions fj may comprise the usual nonlinear effects of continuous covariates, time
trends and seasonal effects, two-dimensional surfaces, varying coefficient terms, i.i.d.
random intercepts and slopes, spatially correlated effects, and geographically weighted

regression (Brezger, Kneib and Lang, 2005).

Once a model of this type is specified, inferences can be drawn from available data for
the population means at any level of the data. These estimators, which can be regarded
from a Bayesian perspective as posterior means or from a Frequentist perspective as
"Best Linear Unbiased Predictors" (BLUPs), often have better properties than simple
sample-based estimators using only data from the unit in question. This makes them
useful in the problem of "small-area estimation,” that is, making estimates for units or

domains for which there is a very limited amount of information (Skinner et al, 1989).

3.3 Geographic location and population distribution

As earlier alluded to, MICS was conducted in all districts in Malawi, a country that is
located in south-east Africa, landlocked between Mozambique to its eastern and southern
sides, Zambia to its western side, and Tanzania to its northern side. It covers a total earth
surface area of 118,484 km?, of which 94,276 km? (79.6%) is made of land and 24,208
km? (20.4%) is made of water. By 2008, the country had a population of 13,077,160
people and its land was divided into three major regions: the central, 35,592 km? had

5,510,195 people (42.14% of national population); the northern, 26,931 km? had
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1,708,930 people (13.08% of national population); and the southern region, 31,753 km?
with 5,858,035 people (44.80% of national population). About 90% of the country’s
population lives in rural areas where, among other things, access to health services and
poverty are major hardships (National Statistical Office of Malawi, 2008 Population &
Housing Census). The country’s population had 7,157,985 (45.1%) people in the age
group of 0-14 years (3,586,696 males; 3,571,298 females), as of October, 2011 (2011

Index Mundi).

3.4 Study Population

The MICS study sampled 31,200 occupied households and interviewed 30,553 of them,
indicating a 97.9% household response rate. In addition, 23,238 under-five children were
listed from the interviewed households, of which questionnaires for 22,994 were
completed, corresponding to a 98.9% response rate. Further, 27,073 women (age 15-49
years) were identified from the interviewed households, of which 26,259 were
interviewed, yielding a response rate of 97.0%. Also, 8,556 men (age 15-49 years) were
identified in every third household and 7,636 of them were interviewed, giving a

response rate of 89.2% (2006 MICS Report).

The targeted population in this study was children aged at most 5 years. The outcome
variable of interest was cases/non-cases of diarrhoea in the diarrhoea as in 2006 MICS.
The explanatory variables included child’s age, child’s breastfeeding status (weaned or

still breastfeeding), a child’s area of residence (rural or urban), region of stay (northern,
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central or southern), toilet facility (shared between families or not), mother’s education,

source of drinking water, and closeness to the lake/river.

3.5 Sampling design of 2006 MICS

3.5.1 Sample size

With an aim to obtain estimates, at district level, on key indicators related to the
wellbeing of children and women, the MICS study targeted a sample of size 1,200
households (HHSs) per district to obtain statistically valid estimates at 95% CI for the
majority of indicators. By then, there were 28 districts in Malawi, two of which (Likoma
and Neno) were too small to draw 1,200 HHs out of the total available HHs. As a result,
Likoma was merged with Nkhata Bay and Neno with Mwanza, thereby reducing the
number of study districts to 26. Weighted estimates for the three regions and Malawi as a

whole were obtained based on the data from the 26 districts (2006 MICS Report).

3.5.2 Sampling technique

A two-stage cluster sampling design was used to select the HHs, where within each
district 40 census enumeration areas (identified as clusters) were selected, and within
each cluster a systematic sample of 30 households was drawn. A total of 31,200 HHs (26
districts multiplied by 1,200 HHSs) were selected in 1,040 clusters (26 districts multiplied
by 40 clusters) in that process. The 1,040 selected clusters were all visited during the

fieldwork period (2006 MICS Report).
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3.6 Instrumentation and data collection

The MICS study, conducted from July to November, 2006, used four questionnaires that
were translated into Chichewa and Tumbuka vernacular languages to collect data. One
questionnaire, termed household questionnaire, administered to the head of the household
or any person who was able to provide the information was used to identify all eligible
persons for the specific forms. It collected information regarding household listing,
education, water and sanitation, household characteristics, insecticide treated nets,

orphan-hood, child labour, and salt iodization.

The other questionnaire, called under-five children questionnaire, administered to
mothers or caretakers of under-five children collected information on Vitamin A,
breastfeeding, care of illness, diarrhoea, malaria, immunization, and anthropometry.
Another questionnaire, termed women questionnaire, administered to women aged 15-49
years gathered data on child mortality, birth history, tetanus toxoid, maternal and
newborn health, marriage/union, contraception, sexual behaviour, HIV/AIDS, and
maternal mortality. The fourth questionnaire, called men questionnaire, administered to
men aged 15-49 years collected data on marriage/union, contraception, sexual behaviour,

and HIV/AIDS.

3.7 Confidentiality and ethical clearance on data use

The MICS data do not show identities and particulars of its respondents. Thus, this study
has maintained confidentiality of participants in reporting of results. The data was used

with permission from the National Statistical Office of Malawi which was granted
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through the Coordinator of the Master of Science in Biostatistics Programme at

Chancellor College, University of Malawi.

3.8 Data analysis procedures

Analysis of data is one of the crucial stages of the research process. It is the properly
analysed data whose results become easy to interpret and understand. Hence, this study
partitioned this stage into further sub-stages, as indicated below for purposes of

straightforward interpretation.

3.8.1 Baseline analysis

The sample data were examined in Stata package to check if all variables under study had
complete values for all the data points or if there were some missing values. The children
with incomplete data in some variables were dropped from analysis, with randomness
assumption. Further, the baseline characteristics of the children with complete
information were analysed in Stata Version 10 package. These included the totals and
percentages of studied children based on the individual, household, cluster location, and

regional characteristics.

The variable-specific estimates of two-weeks diarrhoea incidences were calculated in
Stata Version 10 package. This explored the incidences before applying the statistical

models to the data in light of the objectives to this study.
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3.8.2 Cross-tabulations with outcome variable

The crude odds ratios (ORs) estimating a child’s risk to diarrhoea given two levels of a
particular factor were calculated in Stata Version 10 package. This aimed at
foreshadowing findings to the third objective in this study before fitting the stated

statistical models to the data.

3.8.3 Fitting Logistic, Poisson and Bayesian models to data

To achieve the objectives of this study, the logistic regression model (with logit link), the
Poisson regression model (with log link), and the Bayesian semiparametric regression
model were fitted to the data, using Stata Version 10 package for classical models, and

BayesX package for the Bayesian model.

The results from logistic model are reported as odds ratios (ORs) of effects of levels of
the factors on child diarrhoea together with their corresponding 95% Cls. The logarithms
of expected diarrhoea cases under each factor, with their 95% Cls, are reported from the
Poisson model. On the other hand, the results from the Bayesian method are reported as
estimates of the posterior mean effects of factors on child risk, together with their
corresponding 95% Crls, and contextual non-parametric effects, with Crls are reported

for the non-linear variable age.

3.8.4 Comparative analysis for different models

The logistic and Poisson models were compared based on chi-square’s goodness-of-fit

test results. This answered the second objective stated in this study. The test was
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preferred to the usual coefficients of determination (R?) since the two models were non-
nested and the data used was enumerative (counts) in nature. A goodness-of-fit test is a
statistical test of how well the data at hand support an assumption about the distribution
of a population or random variable of interest (Aczel and Sounderpandian, 2002). The
test determines how well an assumed distribution fits the data. If the data are collected in
a table of k cells with at least 5 counts per cell, and observed counts in cell i are denoted

Oi while expected counts are denoted E;, then the statistic,

X2 =Z?_1—(OiE_E‘)2,

has chi-square distribution with k-1 degrees of freedom (that is, E = np for a binomial

random variable).

For a 1-tailed test, if the computed X > chi-square (k-1, o) from distribution tables, then
the null hypothesis for a particular assumed distribution is rejected at o level, otherwise
the null hypothesis is accepted. The closer the value observed in each cell to the expected
value in that cell from the assumed distribution the higher the chances of accepting the
distributional assumption of the model. Further, model adequacy statistics, such as
pseudo-R? and parameter p-values, for individual models were studied before each model

was compared with another.

The consistency of estimates between the Bayesian semiparametric model and either
Binomial or Poisson model was compared through estimates for sizes of credible and

confidence intervals. This answered the first objective in this study.
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For the Bayesian model, the adequacy was checked via the Deviance Information
Criterion (DIC) and posterior predictive checking was done via posterior credible
intervals. The DIC is a generalization of the Akaike information criterion (AIC) and
Bayesian information criterion (BIC), also termed Schwarz criterion. It is most applicable
in Bayesian model selection problems where the posterior distributions of the models

have been obtained through Markov chain Monte Carlo (MCMC) simulation.

The DIC is an asymptotic approximation as the sample size gets large, just like the AIC
or BIC. It is only valid when the posterior distribution is approximately multivariate
normal. Deviance can be defined as D(6) = —2log(p(y | 8))+ C, where y is the data, @ are
the unknown parameters of the model and p(y|6?) is the likelihood function. C is a
constant that cancels out in all calculations that compare different models and, which
therefore, does not need to be known. The expectation D = E[D(¢)] is a measure of how
well the model fits the data; the larger this is, the worse the fit. The effective number of
parameters of the model is computed as p, = D- D(@), where @ is the expectation of 0.

The larger this is, the better it is for the model to fit the data. The deviance information

criterion is calculated as
DIC=p, +D

The idea is that models with smaller DIC should be preferred to models with larger DIC.
Models are penalized both by the value of D, which favors a good fit, but also (in
common with AIC and BIC) by the effective number of parameters p,. Since D will

decrease as the number of parameters in a model increases, the p, term compensates for
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this effect by favoring models with a smaller number of parameters. Hence, DIC is a

compromise between model fit and complexity (Mesele, 2009).

The advantage of DIC over other criteria, for Bayesian model selection, is that it is easily
calculated from the samples generated by the MCMC simulation. AIC and BIC require

calculating the likelihood at its maximum over #, which is not readily available from the
MCMC simulation. But to calculate DIC, simply compute D as the average of D(6) over
the samples of 4, and D(@) as the value of D evaluated at the average of the samples of 6.

Then the DIC follows directly from these approximations.
3.8.5 Checking randomness of outcome variable

The models were fitted with an assumption that the diarrhoea outcome variable, as well
as the error resulting from fitting each parametric model was a random variable. This
assumption had to be proved in the process of fitting the models. A procedure to employ
depends on several factors, such as type of outcome variable (discrete or continuous), the
way in which the data are observed and recorded (sequentially or not), and the nature of

the study design (cluster or not), among others.

One simplest method used for a binary variable recorded sequentially and randomized
individually is a nonparametric test called Runs Test for randomness. A run is a sequence
of like elements that are preceded and followed by different elements or no element at all
(Aczel and Sounderpandian, 2002). By arranging the diarrhoea cases and non-cases in the
order they were recorded, it was easy to come up with the Runs, and, hence, the

probabilities of obtaining any number of runs. The logic behind the Runs Test for
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randomness is that if one obtains an extreme number of runs (too many or too few), then
it can be decided that the elements in the sequence under study were not generated in a
random fashion (Aczel and Sounderpandian, 2002). Thus, it sufficed to prove

randomness using the Runs Test in this study.

The test was performed in StataSE 10 package with the assumption that data was
recorded sequentially and randomized individually. A two-tailed hypothesis test that was
conducted was as follows: ~ Hy: Diarrhoea observations were generated randomly

versus H;: Diarrhoea observations were not randomly generated.

The test statistic is R = number of runs. The decision rule is to reject Ho at level o, if R <
Ci1 or R > C,. In this case, C; and C, are critical values obtained from cumulative
distribution function F(r) for the total number of runs R in samples of sizes n; for cases

and n, for non-cases, with total tail probability P(R <C; + R>Cy) = a.

3.9 Validity and reliability of estimates

The investigators in MICS study pre-tested the questionnaires during the month of June
2006 in Chichewa and Tumbuka speaking areas of the country and in both urban and
rural settings. Based on the results of the pre-test, modifications were made to the
wording and translation of the questionnaires (2006 MICS Report). This ensured internal
validity of the findings that can be gotten using MICS data. The fact that random
sampling techniques were used to collect MICS data, external validity as well as

reliability of results can also be assumed.
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However, in case the randomness test disapproves of assumption of randomness of
diarrhoea variable then use of the Bayesian semiparametric model strengthens external
validity and reliability of estimates from classical models where the results from the two

types of models tallied, as the Bayesian model did not need the randomness assumptions.

3.10 Summary

This study applied statistical models of binomial, Poisson and Bayesian semiparametric
to analyse two-week incidence variations of child diarrhoea in Malawi. The 2006 MICS
data was used to that effect, with permission from NSO. The analysis of data was
performed in Stata Version 10 package for the two classical models and in BayesX for

Bayesian semiparametric model, with some descriptive statistics done in SPSS as well.

47



CHAPTER 4: RESULTS AND INTERPRETATIONS

4.1 Baseline analysis results

There were 22, 994 under-five children who were interviewed in the 2006 MICS study. A
total of 15, 018 (65.3%) of these had complete information on all the studied variables
and hence, their data was analysed in this study. The incomplete data was dropped based
on randomness assumption. That is, dropped data points could produce similar results if
analysed separately. Further, the large sample that remained ensured that dropping

incomplete data points could not seriously distort the study findings.

The results presented in Table 1 show that the study involved almost equal numbers of
female (50.4%) and male (49.6%) children. Further, it is shown that most of the studied
children were in the age group 12-23 months (23%), with mean age of 28 months and a
standard deviation of 16 months. In addition, a large proportion (56.1%) of the children
was weaned. Furthermore, there were more children (87.1%) residing in rural areas.
Likewise, most children (85.1%) had mothers whose highest education was primary. It is
also indicated that most children studied (39.5%) were living in the southern region of
Malawi. Besides, more children (62.2%) were living in families that were not sharing
toilets. Similarly, a large proportion of the children (71.7%) were drinking water from

piped source.
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Finally, the results show that more children (53.1%) were residing along Lake Malawi
and Shire Valley areas. In this respect, Lake Malawi and Shire Valley districts included
Karonga, Rumphi, Nkhata-bay, Nkhotakota, Salima, Dedza, Mangochi, Balaka,
Machinga, Zomba, Mwanza, Blantyre, Chikhwawa, Thyolo, and Nsanje. Whereas,
Chitipa, Mzimba, Kasungu, Ntchisi, Dowa, Lilongwe, Mchinji, Ntcheu, Phalombe,

Chiradzulu, and Mulanje were regarded as highland districts.

On incidence rate, the results indicate that out of the 15,018 children analysed 3,282
(21.85%) had diarrhoea at some time in two weeks preceding the survey. In addition, it is
shown that the incidence rate was proportionally distributed in males (10.97%) and
females (10.88%). Further, the rate was highest in age group 12-23 months (8.5%). It was
also high in the breastfed children (13.4%). Furthermore, the rate was proportional
between children who were living along Lake Malawi and Shire river valley (10.86%)

and those from the highlands (10.99%).

Additionally, the rate was highest in central region of the country (9.36%) compared to
the other two regions. Similarly, the rate was higher in children who were living in rural
areas of the country (19.38%). Likewise, incidence was higher in children whose families
were not sharing toilets (12.45%). Besides, the rate was highest in children whose
mothers’ highest education was primary (18.87%) compared to other studied levels of
education. Finally, the incidence rate was higher in children who were drinking from

piped water (15.28%) compared to other three sources.
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Table 1: Baseline analysis results for child diarrhoea cases

Characteristic Total (%) Incidence (%)
Overall 15, 018 (100) | 3,282 (21.85)
Gender: Male 7,450 (49.61) | 1,648 (10.97)

Female 7,568 (50.39) | 1,634 (10.88)
Age: 0-11 2,826 (18.82) 682 (4.54)
12-23 3,458 (23.03) 1,277 (8.5)
24-35 3,400 (22.64) 698 (4.65)
36-47 3,054 (20.34) 399 (2.66)
48-59 2,280 (15.18) 226 (1.5)
Breastfeeding: Breastfed 6,585 (43.85) | 2,013 (13.40)
Weaned 8,433 (56.15) | 1,269 (8.45)
Area of residence: Rural 13,082 (87.11) | 2,911 (19.38)
Urban 1,936 (12.89) | 371 (2.47)

Altitudinal locale:
Lakeshore/riverine

7,981 (53.14)

1, 631 (10.86)

Highland 7,037 (46.86) | 1,651 (10.99)
Region: Northern 3,650 (24.30) 604 (4.02)
Central 5,429 (36.15) | 1,405 (9.36)
Southern 5,939 (39.55) 1,273 (8.48)
Mother’s education: Primary | 12,779 (85.09) | 2,834 (18.87)
Secondary 2,165 (14.42) | 437 (2.91)
Higher 74 (0.49) 11 (0.07)
Family toilet: Shared 5,670 (37.75) | 1,413 (9.41)
Not shared 9,348 (62.25) | 1,869 (12.45)
Drinking water source: Piped | 10,766 (71.69) | 2,294 (15.28)
Protected well | 818 (5.45) 188 (1.25)
Unprotected 2,455 (16.35) | 584 (3.89)
well 979 (6.52) | 216 (1.44)
Surface water

4.2 Cross-classification results

The results from Table 2 show that female children were as likely as male children to
catch diarrhoea, although gender is not a significant factor in determining child’s risk.
Further, it is indicated that weaned children had 59.8% reduced odds of catching
diarrhoea than children who were breastfed. The age variable results show that children
aged 12-23 months had 84.1% higher odds of catching diarrhoea than those aged 0-11
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months. While children aged 24-35; 36-47; and 48-59 months had respectively 18.8%;

52.8%; 65.4% reduced odds of catching diarrhoea compared to those aged 0-11 months.

Furthermore, it is shown that children from rural areas had 20.7% higher odds of catching
diarrhoea than those from urban areas. Likewise, children who were living along the
shores of Lake Malawi and Shire river banks had 16.2% reduced odds of catching
diarrhoea than those from highlands. On region of stay, the results show that children
who were living in the central and southern regions had respectively 76.1% and 37.6%
higher odds of catching diarrhoea compared to those who were living in the northern
region. In addition, a child from secondary educated mother had 11.3% reduced odds of
catching diarrhoea than the one from a primary educated mother. But the results show no
difference between odds of a child from primary educated and tertiary educated mother

catching diarrhoea.

Besides, the results show that children whose families were sharing toilets had 32.8%
increased odds of catching diarrhoea than those whose families were not. Finally, it is
shown that children who were drinking from unprotected well had 15.3% increased odds
of catching diarrhoea compared to those who were drinking from piped water. But there
was no significant difference in odds of catching diarrhoea between children who were

drinking from piped water and those drinking from protected well or surface water.
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Table 2: Unadjusted Odds Ratios of child diarrhoea for selected predictors

Variable Odds Ratio (OR) | 95% CI of OR | P-value
Gender: ref (Male) 0.969 0.897-1.047 0.432
Breastfeeding: ref(breastfed) 0.402 0.371-0.436 <0.001
Age in months: ref(0-11)
12-23 1.841 1.646-2.058 <0.001
24-35 0.812 0.72-0.916 <0.001
36-47 0.472 0.412-0.542 <0.001
48-59 0.346 0.293-0.408 <0.001
Area of residence: ref(urban) 1.207 1.07-1.362 0.002
Altitudinal locale: ref(highland) 0.838 0.775-0.905 <0.001
Region: ref(Northern)
Central 1.761 1.582-1.96 <0.001
Southern 1.376 1.236-1.532 <0.001
Mother’s education: ref(primary)
Secondary 0.887 0.793-0.994 0.038
Higher 0.613 0.322-1.164 0.13
Family toilet: ref(not shared) 1.328 1.228-1.437 <0.001
Drinking water source: ref(piped)
Protected well 1.102 0.93-1.305 0.26
Unprotected well 1.153 1.039-1.279 0.007
Surface water 1.045 0.893-1.224 0.58

4.3 Logistic and Poisson model results
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number of cases at any time of observation (GoF = 1019, p = 0.0015).

The results, for a logistic regression model, presented in Table 3 show that the model as a
whole fits the diarrhoea data significantly better than an empty model, that is, a model
with no predictors (LR = 985.24, p < 0.001). However, chi-square’s goodness-of-fit test

result leads to rejection, at 5% level, of the binomial distribution assumption of total

For Poisson model, the output for unconditional mean and variance of diarrhoea cases
give mean of 0.2185 and variance of 0.1708. The values, though for unconditional mean
and variance, indicate slight under-dispersion. However, the variance is not substantially

smaller than the mean, E(X(Y=1)) ~ var(2(Y=1) = 0.2, and thus the predictor variables




could be of help. Further, using Microsoft Excel ‘rand’ function, random samples of 100,
1000, 5000, 10000 and 15000 generated from the diarrhoea variable produced prevalence
rates of 0.27, 0.251, 0.242, 0.241, and 0.239 respectively, indicating that increasing
sample size resulted in reduction of prevalence rate. So, it was reasonable to approximate
binomial model with logit link by Poisson model with log link, but with robust standard
errors to account for clustering of data. The results shown in Table 3 for Poisson model
with robust (residual-based) standard errors, taking into account of the clustering,
indicate that the model is significantly better than an empty model (LR=973, p<0.001).
Further, the goodness-of-fit test is accepted at 5% level (GoF= 9225, p = 1.00), showing
that the data give no statistical evidence that the diarrhoea cases does not follow Poisson

distribution.

The estimates from Logit and Poisson models show that, adjusting for other factors, a
weaned child had respectively 30.5% and 23.2% reduced odds and risk of catching
diarrhoea compared to a breastfed child. In addition, the two models show that children
who were living in the central region had respectively 67.5% and 47.2% higher odds and
risk of catching diarrhoea than those who were living in northern region, adjusting for
other factors. Likewise, children from southern region had respectively 36.5% and 27.2%
adjusted higher odds and risk of catching diarrhoea compared to children from the north.
Furthermore, it is indicated that odds and risk of catching diarrhoea increased by 27.3%
and 19.2% respectively in children whose families shared toilets compared to those

whose families did not, controlling for other factors.
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The results also show that adjusted odds and risk of catching diarrhoea in children aged
12-23 and months were respectively higher by 92.8% and 57% than in children aged 0-11
months, while there was no difference in odds or risk between age group 24-35 and age
0-11 months. However, the adjusted odds and risk were respectively lower by 33.1% and
30% in children aged 36-47 and lower by 50.4% and 46.2% in age 48-59 compared to
those aged 0-11 months. Similarly, both models showed that children living in families
that shared toilets had 27.3% and 19.2 % respectively higher odds and risk of catching

diarrhoea.

Finally, the two models showed no evidence of difference in adjusted odds and risk of
catching diarrhoea between children living in rural and urban areas, lakeshore/riverine
areas and highlands, primary educated and higher than primary educated mothers, and in
children drinking from piped and other sources of drinking water. These results were in

agreement with the crude OR reported before.
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Table 3: Logit and Poisson model, adjusted OR and RR, results

Variable

Logit, OR (95%Cl, p-
value)

Poisson, RR (95%Cl, p-
value)

Breastfeeding: ref(breastfed)

0.695 (0.6-0.8, p<0.001)

0.768 (0.693 - 0.85, p<0.001)

Age in months: ref(0-11)
12-23
24-35
36-47
48-59

1.928 (1.17-2.16, p < 0.001)
1.09 (0.93-1.29, p = 0.29)
0.669 (0.55-0.81, p < 0.001)
0.496 (0.4-0.61, p < 0.001)

1.57 (1.452-1.699, p<0.001)
1.055(0.936-1.19, p=0.378)
0.7(0.604-0.813, p<0.001)
0.538(0.453-0.637, p<0.001)

Area of residence: ref(urban)

1.122 (0.985, 1.28, p=0.08)

1.09(0.989-1.202, p=0.083)

Altitudinal locale: ref(highland)

0.918 (0.84, 1.002, p=0.055)

0.939(0.881-1.001, p=0.052)

Region: ref(Northern)
Central
Southern

1.678(1.495-1.88, p<0.001)
1.365(1.22-1.528, p<0.001)

1.472 (1.348-1.608, p<0.001)
1.272 (1.167-1.387, p<0.001)

Mother’s education: ref(primary)
Secondary
Higher

0.922 (0.818, 1.04, p=0.185)
0.783 (0.404, 1.52, p=0.47)

0.941(0.861-1.029, p=0.182)
0.822 (0.485-1.395, p=0.468)

Family toilet: ref(not shared)

1.273 (1.17-1.38, p<0.001)

1.192 (1.123-1.266, p<0.001)

Drinking water source: ref(piped)
Protected well
Unprotected well
Surface water

0.997(0.84, 1.19, p=0.97)
1.036(0.93, 1.16, p=-0.53)
1.084(0.92, 1.28, p=0.343)

0.995 (0.878-1.129, p=0.942)
1.025 (0.947-1.109, p=0.539)
1.063 (0.943-1.2, p=0.321)

Overall model fit

GoF=1019, p=0.002;
LR=985, p<0.001

GoF=9225, p=1.00; W=973,
p<0.001

4.4 Runs Test for Randomness results for diarrhoea variable

The results from Runs Test for Randomness of the diarrhoea outcome variable analysed

in Stata Version 10 for n = 15, 018, using either continuity or split mean as cut-off points,

with or without continuity correction produced the number of runs statistic, r = 4, 963 (z

= -3.99, p < 0.0001). Hence, the data provide no evidence, at 5% level of error, that the

diarrhoea observations were generated in a random way. This was expected as 2006

MICS sampling was done at cluster level and not individual level of a child. Since the
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analysis of the data is done list wise, it is very likely to find that observations are not a

random sample viewed from case by case situation rather than cluster by cluster.

4.5 Bayesian semiparametric model results

The results presented in this section were run in BayesX package Version 2.0.1, using the

following code:

b.regress cal = cage_11(psplinerw2) + bf2 + ed3a + ws8 + water3 + dist3 +
hh6 + ufreg, family=binomial iterations=12000 burnin=2000 step=10 predict

using d.

The Markov chain Monte Carlo (MCMC) simulations were run on the set of full
conditional posterior distributions in order to derive the full posterior estimates for all the
parameters of interest (see Ferreira da Silva, 2010c). The options iterations, burnin and
step define the total number of iterations, the burn in period, and the thinning parameter
of the MCMC simulation run (Brezger, Kneib and Lang, 2005). Specifying step=10 as
above forces BayesX to store only every 10th sampled parameter which leads to a
random sample of length 1000 for every parameter in this case. Therefore, a sample of
10000 random numbers is obtained with the above specifications. It should be noted that

the choice of iterations also affects computation time.

4.5.1 Bayesian model, fixed-effect results

The model presented in Table 4 has the following estimation results for the DIC: DIC

based on the un-standardized deviance results are; Deviance (bar_mu) = 14847.347, pD =
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11.887, DIC = 14871.121, and DIC based on the saturated deviance results are; Deviance

(bar_mu) = 14847.347, pD = 11.887, DIC = 14871.121.

The effects displayed in Table 4 show that posterior mean amount of diarrhoea cases
were expected to be low in weaned children, in children whose mother’s education was
higher than primary, and in children who lived close to Lake Malawi or Shire River.
However, the posterior mean amount of cases were expected to be high in children whose
families were sharing toilets, in children who were drinking from non-piped water source,
in children who were living in rural areas, and in children who were living in other
regions than northern region. These results were supported by direct fixed-effects results

for each categorical variable that were analysed in BayesX as well.

Finally, it is clear that the 80% credible interval indicates significance of all variables
studied. While the 95% credible interval shows that mother’s education, source of
drinking water and area of residence were not significant factors for determining a child’

risk to diarrhoea. These results once again agree with those from logit and Poisson

models.

Table 4: Bayesian model, fixed-effects results

Variable Posterior mean | 95%Crl | 80%Crl
Constant -1.137 -1 -1
Breastfeeding: ref(breastfed) -0.376 -1 -1
Mother’s education: ref (primary) -0.111 0 -1
Family toilet: ref(not shared) 0.258 1 1
Drinking water source: ref(piped) 0.029 0 1
Altitudinal locale: ref(highland) -0.202 -1 -1
Area: ref(urban) 0.110 0 1
Region: ref(northern) 0.123 1 1
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4.5.2 Bayesian model, non-linear effects results

From Table 5, it is clear that expected posterior mean cases of diarrhoea was low in age
groups 0-11 months, 36-47 months, and 48-59 months, but high in age groups 12-23
months and 24-35 months. However, the 95% credible intervals show that age groups O-
11 and 24-35 months have no significant effects. But the most vulnerable age group to

diarrhoea is 12-23 months as found in logit and Poisson models.

Table 5: Bayesian model, non-linear effects results

Age group in months | Posterior mean | 95% Crl | 80% Crl
0-11 -0.016 0 0
12-23 0.624 1 1
24-35 0.078 0 1
36-47 -0.411 -1 -1
48-59 -0.714 -1 -1
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CHAPTER 5: DISCUSSION OF RESULTS

5.1 Introduction

This study sought to establish consistency of estimates found using Bayesian
semiparametric model and classical models, as well as comparing the classical models
used. This was achieved by fitting the Bayesian semiparametric additive model, logistic
and Poisson regression models to the 2006 MICS diarrhoea data which was collected by
National Statistical Office of Malawi between June and December of that year with an
aim of estimating key indicators of child and women health in each district. The analyses

were done in SPSS, Stata, and BayesX packages as earlier alluded to.

5.2 Consistency of estimates found by Bayesian and Logit/ Poisson models

The results presented in Chapter 4 have shown that significance and direction of
estimates from Bayesian semiparametric model and Poisson or logit model were
generally similar. The exception is in closeness to lake/river variable which was found to
be statistically significant using the Bayesian semiparametric model but insignificant
factor using logit or Poisson models. The three models have coincidentally ruled out
usefulness of mother’s education, area of residence (rural or urban), and source of

drinking water in determining child diarrhoea.
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5.3 Classical models’ comparison

The chi-square’s goodness-0f-fit tests’ results presented in Chapter 4 suggest that Poisson
log-linear regression model, with robust standard errors, fits the diarrhoea data set well
than the logistic regression model. This was expected as unlike the logistic model,
Poisson model with robust standard errors takes into account household correlations due

to clustering of data.

5.4 Risk factors for child diarrhoea

The results presented in Chapter 4 suggest that gender of a child has little (if any) to do
with a child’s risk to diarrhoea as female children were as likely as male children to catch
diarrhoea. This may imply that the biological make-up of a child’s body gives no bias or

advantage to any gender in terms of likelihood of catching diarrhoea.

Further, it has been found out that breastfeeding status of a child is a useful factor in
determining a child’s risk to diarrhoea. Thus, weaned children were found to have lower
chances of catching diarrhoea than still breastfeeding children. This may reflect low
possibilities of gastro transmission in a weaned child who chooses what to put to the
mouth independent of the mother. It may also reflect on low hygiene considerations in
breastfeeding mothers when giving food items to the breastfeeding babies in the country.

In addition, age of a child was found to be a useful factor in estimating child’s risk to
diarrhoea. To that effect, age group 12-23 months has been found to be the most risky
group to diarrhoea compared to all other age groups studied. The results also suggest that

the risk is lower in age 0-11 months and after 23 months of a child’s life.
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These variations across age groups may reflect breastfeeding stages of a child. For
instance, the weaning time which is reported to pose more threats of diarrhoea attacks to
a child (Kourtis et al, 2007) is around 17.6 months (Kazembe, 2008), that is, age group
12-23 months spans weaning time. Further, the low risk in age 0-11 months may reflect
the fact that the data had a mixture of exclusively predominantly breastfed children who
are reported to be at low risk of morbidity and mortality due to diarrhoea (Arifeen et al,
2001; Betran, 2001; WHO, 2000; Yoon, 1996; Hanson, 1994; Victora, 1992) and the
general breastfed children. The 2006 MICS, whose data was analysed in this study,
reported that approximately 56% of children aged less than 6 months were exclusively
breastfed. Then the observed low risk of catching diarrhoea in age group 0-11 months,
which overlaps age 0-6 months, reflect the high percentage of exclusively breastfed

children analysed in the study.

However, the results show a shift of most risky age group upward from age 6-11 months
reported in 2004 Malawi DHS and age 6-8 months reported by Kandala et al (2008) for
the 1999 and 2003 Nigerian DHSs to age 12-23 months reported in this study. The shift
seems to mimic the trend of diarrhoea in breastfeeding children reported recently by
researchers in Malawi. Although this study was not intended to explore interaction of
studied factors, there seems to be an interaction between child’s age and breastfeeding
status. Studies in Malawi have shown an increase in diarrhoea during and following
weaning time among exclusively breastfed infants reportedly weaned at 6 months
(Clayden, 2007). The fact that weaning time in Malawi is around 17.6 months (Kazembe,

2008) which is within 12-23 months age group then these results are not a surprise. As
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per tradition, weaning time entails introduction of complementary infant foods which,
may in turn spread diarrhoea to the child if not hygienically prepared by the mother. This
is why researchers have recommended that greater emphasis should be placed on
hygienic preparation of weaning foods and water purification in order to decrease infant

diarrhoeal morbidity in resource-limited settings (Kourtis et al, 2007).

Furthermore, region of stay has been found to be a significant factor for determining
child’s risk to diarrhoea. Thus, the results suggest that children from the central and the
southern regions are at higher risk compared to those from the northern. Compared with
the southern region, children from central region have higher chances of catching
diarrhoea. The causes of such differences can be far from speculation. However, the
findings agree with the 2004 Malawi DHS results and a study report by Kazembe et al

(2009).

Likewise, the findings have shown that children whose mothers’ highest education
qualification is secondary have marginally lower chances of catching diarrhoea compared
to those with primary educated mothers. But the findings suggest no difference in the risk
of catching diarrhoea between children with primary educated mothers and those with
tertiary educated mothers, as well as between children with secondary educated mothers
and tertiary educated mothers. However, mother’s education was found to be statistically
insignificant factor for determining child diarrhoea. This may reflect the way the study
was designed, which just sought differences in academic qualification and not in health

education of mothers.
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Although other studies in sub-Saharan Africa have supported influence of mother’s
academic qualification on a child’s chances of catching diarrhoea (see Kandala et al,
2008), there cannot be any immediate reason as to why one can think that mere
differences in levels of academic or formal education achievements (other than health
education) can result in differences in child’s risk to diarrhoea. No wonder there was no
difference in effects between secondary and tertiary education, the same results could be
expected if levels of tertiary education were compared (for instance, diploma and degree).
What is felt to have an effect on child’s health is the mother’s knowledge in health, which
is richly provided in the primary education curriculum in Malawi. But also, mere health
education literacy of the mother provided through attendance of antenatal or postnatal

care services could serve the purpose of controlling child’s health.

Besides, the findings have indicated that children from rural areas have high chances of
catching diarrhoea compared to those from urban areas, although area of residence was
found to be statistically insignificant factor in determining a child’s risk. This agrees with
results from the 2004 Malawi DHS. The situation may reflect low rates of exclusive
breastfeeding practices in rural areas of the country. It is reported that exclusive
breastfeeding reduces diarrhoea threats in under-five children (WHO, 2000). A study
report by Kerr et al (2007) has indicated that only 4% of Malawian children are
exclusively breastfed for 6 months in rural areas of Ekwendeni, Mzimba district. Thus, a
majority of mothers living in rural areas of Ekwendeni do not practice exclusive
breastfeeding during the first 6 months of a child’s life. If the situation is true in all rural
parts of the country, then the high risk to diarrhoea findings for rural children noted in

this study may not be a surprise.
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Furthermore, the results have found closeness to lake/river as a useful factor in
determining a child’s risk to diarrhoea. The findings suggest that children living along the
Lakeshore or the river banks have reduced chances of catching diarrhoea compared to
those from highlands. The opposite was expected, but these results may reflect high
utilization of water sanitation interventions rolled by government and other stakeholders,
such as free water guard in drinking water and improved drinking water sources-such as
piped water and boreholes (Kumwenda, 2009), targeted to lakeshore/riverine dwellers in
recent years who were previously believed to be at high risk of catching diarrhoea than
highlanders. Thus, high use of safe and clean drinking water by residents of lakeshore or
shire valley has reversed the old trend of child diarrhoea cases between highlands and

lakeshore areas.

The findings also suggest that there is no difference in tendencies of catching diarrhoea in
children who drink from protected well and surface water to those who drink from piped
water. But children who drink from unprotected well were found to have marginally
increased chances of catching diarrhoea compared to those drinking from piped water.
However, source of drinking water was found to be statistically insignificant factor in
determining a child’s risk to diarrhoea. But the findings may reflect splash effects of the
water sanitation interventions projects, such as free water guard, which were underway in
many parts of the country around or during the time of MICS study which could not bring
significant differences in diarrhoea cases in children who were drinking from different

water sources.
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Finally, the findings suggest family toilet facility is a useful factor in estimating a child’s
risk to diarrhoea. Thus, children from families that shared toilets were found to have
increased chances of catching diarrhoea than those whose families did not share toilets.
This may reflect high possibilities of gastro transmission from other people who use the

same toilet as the child or her mother.

5.5 Summary

The study has revealed that most findings from both classical models were consistent
with those from the Bayesian model. However, the analysis has ruled out the binomial

distributional assumption about child diarrhoea data but supported Poisson assumption.
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The findings suggest that estimating child’s risk to diarrhoea using Bayesian
semiparametric model is as good as using logistic or Poisson model. This is the case since
the two groups of models have agreed in isolating most significant as well as insignificant
factors for determining the child’s risk to diarrhoea. But of the two classical models used
on the data, the goodness-of-fit of Poisson regression, with robust standard errors, is

better than logistic model.

It can further be concluded that the region from which a child comes (northern, central, or
southern), age of a child, whether or not a child is still breastfeeding, whether or not a
child comes from a family that shares toilet with other families, and closeness to
lake/river are statistically significant factors in determining likelihood of the child
suffering from diarrhoea. But, under-five child diarrhoea has little (if any) to do with

area of residence (rural or urban), source of drinking water, and mother’s education.

6.2 Implications of findings

The findings suggest that applying Bayesian semiparametric models together with

classical models can help to confirm classical model estimates or this can provide
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alternative estimates which can be trusted when one is not sure of level of satisfaction of
classical model assumptions. Thus, various approaches to data analysis should be seen as
complementary to one another rather than as competitors for outright domination (Julian

Besag in McCullagh, 2002).

6.3 Limitations of the study

The study sample had 7,976 (34.69%) children with missing values in at least one
variable of interest. This may have influenced the results in this study in one way or
another as the nature of variability of the dropped data was not known, but was just

assumed to be random.

In addition, the study did not exhaust all possible models for the diarrhoea data since it
was just an application study on use of statistical models in explaining under-five
diarrhoea incidence. It is important to mention that other models, such as Negative
Binomial, Generalized Estimating Equations were possible, especially in situations where
serious under-dispersion could be noted when fitting the Poisson model and where inter-

cluster correlations were possible.

The study findings on actual epidemiology of under-five child diarrhoea incidence in the
Malawian population may not be accurate since the survey data used are from 2006
which is not the most current one in the country. Thus, focus of the study was on whether
a statistical model can be used to explain/predict the likelihood of a child suffering from
diarrhoea rather than on whether the study findings on diarrhoea situation in the country

reflect the true current situation on the ground. Thus, much attention was on formal
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theory of the applied statistical models and their practical outcomes rather than on

diarrhoea findings.

The models applied were not extended to capture seasonality of child diarrhoea in
Malawi although it is obvious that findings on seasonality of the disease could add more
meaning to the study, as study reports have indicated that there is a higher probability of

infant diarrhoea in the rainy, compared to the dry season in Malawi (Clayden, 2007).

Finally, the households selected per each cluster were systematically sampled in the
MICS study and the district was regarded as the universe, but data in this study was
analysed at an aggregated national level. Moreover, the Runs Test for randomness ruled
out randomness of the diarrhoea variable. This may have biased the results in one way or
the other in this study. However, consideration of clusters using district as the universe of
sampling in the MICS study made it difficult to find a shortcut way of proving
randomness of diarrhoea outcome variable at national level standpoint in this research, as
randomness at unit level may not necessarily imply randomness at aggregated level for

some distributions other than the normal.

6.4 Recommendations

6.4.1 Bayesian semiparametric regression models should be employed in parallel with
classical models as a checking tool when the researcher is in doubts of meeting

classical model assumptions.
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6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

Researchers should consider fitting Poisson regression model with robust standard
errors when analysing child diarrhoea data that is randomized at cluster level
compared to ordinary logistic regression model.

More interventions in child diarrhoea are needed in central region of the country
by government and other stakeholders in health in order to contain the problem in
the region.

MoH and other stakeholders should continue mobilising for high hygiene
practices in breastfeeding mothers in the country, especially around weaning
period.

MoH and other stakeholders may initiate campaign for independent family toilets
in the country as child diarrhoea is associated with sharing of toilets.

There is need for another study that may try to find causes of high risk to

diarrhoea in children from central region of Malawi.
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